Microbial Electricity Generation Enhances Decabromodiphenyl Ether (BDE-209) Degradation
نویسندگان
چکیده
Due to environmental persistence and biotoxicity of polybrominated diphenyl ethers (PBDEs), it is urgent to develop potential technologies to remediate PBDEs. Introducing electrodes for microbial electricity generation to stimulate the anaerobic degradation of organic pollutants is highly promising for bioremediation. However, it is still not clear whether the degradation of PBDEs could be promoted by this strategy. In this study, we hypothesized that the degradation of PBDEs (e.g., BDE-209) would be enhanced under microbial electricity generation condition. The functional compositions and structures of microbial communities in closed-circuit microbial fuel cell (c-MFC) and open-circuit microbial fuel cell (o-MFC) systems for BDE-209 degradation were detected by a comprehensive functional gene array, GeoChip 4.0, and linked with PBDE degradations. The results indicated that distinctly different microbial community structures were formed between c-MFCs and o-MFCs, and that lower concentrations of BDE-209 and the resulting lower brominated PBDE products were detected in c-MFCs after 70-day performance. The diversity and abundance of a variety of functional genes in c-MFCs were significantly higher than those in o-MFCs. Most genes involved in chlorinated solvent reductive dechlorination, hydroxylation, methoxylation and aromatic hydrocarbon degradation were highly enriched in c-MFCs and significantly positively correlated with the removal of PBDEs. Various other microbial functional genes for carbon, nitrogen, phosphorus and sulfur cycling, as well as energy transformation process, were also significantly increased in c-MFCs. Together, these results suggest that PBDE degradation could be enhanced by introducing the electrodes for microbial electricity generation and by specifically stimulating microbial functional genes.
منابع مشابه
Behavior of decabromodiphenyl ether (BDE-209) in soil: effects of rhizosphere and mycorrhizal colonization of ryegrass roots.
A rhizobox experiment was conducted to investigate degradation of decabromodiphenyl ether (BDE-209) in the rhizosphere of ryegrass and the influence of root colonization with an arbuscular mycorrhizal (AM) fungus. BDE-209 dissipation in soil varied with its proximity to the roots and was enhanced by AM inoculation. A negative correlation (P < 0.001, R(2) = 0.66) was found between the residual B...
متن کاملInteraction of Polybrominated Diphenyl Ethers and Aerobic Granular Sludge: Biosorption and Microbial Degradation
As a new category of persistent organic pollutants, polybrominated diphenyl ethers (PBDEs) have become ubiquitous global environmental contaminants. No literature is available on the aerobic biotransformation of decabromodiphenyl ether (BDE-209). Herein, we investigated the interaction of PBDEs with aerobic granular sludge. The results show that the removal of BDE-209 from wastewater is mainly ...
متن کاملBehavior of decabromodiphenyl ether (BDE-209) in the soil-plant system: uptake, translocation, and metabolism in plants and dissipation in soil.
Deca-bromodiphenyl ether (BDE-209) is the major component of the commercial deca-BDE flame retardant. There is increasing concern over BDE-209 due to its increasing occurrence in the environment and in humans. In this study the behavior of BDE-209 in the soil-plant system was investigated. Accumulation of BDE-209 was observed in the roots and shoots of all the six plant species examined, namely...
متن کاملBiodegradation of Decabromodiphenyl Ether (BDE-209) by Crude Enzyme Extract from Pseudomonas aeruginosa
The biodegradation effect and mechanism of decabromodiphenyl ether (BDE-209) by crude enzyme extract from Pseudomonas aeruginosa were investigated. The results demonstrated that crude enzyme extract exhibited obviously higher degradation efficiency and shorter biodegradation time than Pseudomonas aeruginosa itself. Under the optimum conditions of pH 9.0, 35 °C and protein content of 2000 mg/L, ...
متن کاملPhotodegradation of decabromodiphenyl ether adsorbed onto clay minerals, metal oxides, and sediment.
The photodebromination of decabromodiphenyl ether (BDE-209) adsorbed onto six different solid matrixes was investigated in sunlight and by irradiation with 350 +/- 50 nm lamps (four lamps at 24 W each). After 14 days of lamp irradiation, BDE-209 degraded with a half-life of 36 and 44 days, respectively, on montmorillonite or kaolinite, with much slower degradation occurring when sorbed on organ...
متن کامل